双语美文精选-EnglishSky

英语名著阅读,英语名著教学资源,英语名著阅读,阅读资源,阅读教学研究,英语考试

外刊精读:你是我的量子纠缠态,宇宙毁灭我还在

2022年10月4日,瑞典皇家科学院宣布将2022年度诺贝尔物理学奖授予研究量子纠缠的三位科学家,分别是法国物理学家阿兰·阿斯佩(Alain Aspect)、美国物理学家约翰·克劳瑟(John Clauser)以及奥地利物理学家安东·塞林格(Anton Zeilinger)。

他们通过开创性的实验展示了处于纠缠状态的粒子的潜力,这三位获奖者对实验工具的开发,也为量子技术的新时代奠定了基础。

美剧迷们或许知道,在《神盾局特工》中出现过“量子纠缠”,那个没有眼睛的神秘异人族(Inhuman)Gordon,他的超能力是瞬移,而这种能力则被九头蛇(Hydra)称之为量子纠缠(quantum entanglement)。下面我们就来看看剧中是如何介绍“量子纠缠”,以及Gordon是如何运用他的超能力的。

看起来是不是很酷炫?好想拥有瞬移的本事!那么,量子纠缠究竟是什么呢?

“量子纠缠(Quantum Entanglement)”这一术语最早由奥地利物理学家,量子力学奠基人之一的埃尔温·薛定谔提出,他称之为量子力学最重要的特征。

用物理的语言来说,对于一个处于纠缠态的多粒子系统,其量子态函数不能分解成各个部分的量子态的乘积。

通俗地讲,量子纠缠指的是在空间上分开的两个或多个粒子,由于某种相互作用,使得各个粒子所拥有的信息或物理性质成为了整体特性而无法分离。

举例来说,单个电子随机地具有两种可能的自旋模式,即所谓的“向上”或“向下”,而处于纠缠态的电子对(例如氦原子核外的电子),无法做到只测量其中一个电子的自旋而不影响另一个,即单个电子的量子态无法从整体中剥离而不造成其他影响。

What can Schrödinger’s cat teach us about quantum mechanics?

Consider throwing a ball straight into the air. Can you predict the motion of the ball after it leaves your hand? Sure, that’s easy. The ball will move upward until it gets to some highest point, then it will come back down and land in your hand again. Of course, that’s what happens, and you know this because you have witnessed events like this countless times.

竖直地向上扔一个球,你能预测当球离开你的手以后的运动吗?当然,这很简单。在到达某个最高点之前,这个球将一直上升,之后它会落下来,再一次回到你的手上。当然,事情就是这样的。你之所以知道,是因为你已经无数次目睹过这样的事情发生。

motion n [课标新增词] (物体的)运动

witness v 目击;亲眼所见

countless adj 无数的;不计其数的

               (count + -less)

You’ve been observing the physics of everyday phenomena your entire life. But suppose we explore a question about the physics of atoms, like what does the motion of an electron (电子) around the nucleus (原子核) of a hydrogen (氢) atom look like?

在整个一生中,你一直在观察日常生活中的物理现象。但是,假设我们去探索一个关于原子物理的问题,比如,一个电子绕氢原子核的运动是什么样?

phenomenon n [学术词] 现象 (复数 phenomena)

Could we answer that question based on our experience with everyday physics? Definitely not. Why? Because the physics that governs the behavior of systems at such small scales (规模) is much different than the physics of the macroscopic (宏观的) objects you see around you all the time.

我们能依据日常的物理经验去回答吗?肯定不行。为什么?因为微观系统运行的物理定律与围绕在你身边的宏观物理有很大的区别。

definitely adv [课标新增词] [学术词] 肯定地;确切地(近 certainly)

The everyday world you know and love behaves according to the laws of classical mechanics. But systems on the scale of atoms behave according to the laws of quantum mechanics (量子力学). This quantum world turns out to be a very strange place.

你认识和深爱的世界依据经典力学定律而运动,但是,原子规模的系统被量子力学定律所掌控。事实证明,量子世界是个十分奇特的地方。

the laws of classical mechanics 经典力学定律(牛顿运动定律或与牛顿定律有关且等价的其他力学原理)

according to prep [课标新增词] 按照;根据

turn out to be 证明是

An illustration of quantum strangeness is given by a famous thought experiment: Schrödinger’s cat. A physicist, who doesn’t particularly like cats, puts a cat in a box, along with a bomb that has a 50% chance of blowing up after the lid is closed.

一个著名的思想实验给你描画出来量子世界的奇特性:薛定谔的猫。一个实际上并不太喜欢猫的物理学家,将一只猫放进盒子里,并同时放了一颗炸弹,在盖子盖上后,炸弹有50%的几率会爆炸。

illustration n [学术词] 示例(illustrate + -ion;illustrate v  [课标新增词] 解释)

blow up 爆炸 (近explode)

Until we reopen the lid, there is no way of knowing whether the bomb exploded or not, and thus, no way of knowing if the cat is alive or dead.

除非我们重新打开盖子,否则我们没有办法得知炸弹有没有爆炸。因此,也无法知道猫是活着还是死了。

there is no way of doing sth 没有办法做某事

thus adv [正式用语] 因此

In quantum physics, we could say that before our observation the cat was in a superposition state. It was neither alive nor dead but rather in a mixture of both possibilities, with a 50% chance for each.

在量子物理中,我们可以说在观测之前,那只猫处于叠加状态。既不是活着也不是死亡,而是两种可能性的混合。每种可能性都有50%的概率。

The same sort of thing happens to physical systems at quantum scales, like an electron orbiting in a hydrogen atom. The electron isn’t really orbiting at all. It’s sort of everywhere in space, all at once, with more of a probability (可能性) of being at some places than others, and it’s only after we measure its position that we can pinpoint (确定) where it is at that moment.

同样的事情发生在量子规模的物理系统上,就像一个电子绕氢原子核运行。电子不是真正的绕轨道运行,就像是空间中的任何地方,都在一瞬间存在某处的可能性比其他地方更大。并且只有在我们测量过它的位置之后,我们才可以精确地知道那个时刻它在哪儿。

all at once 突然

A lot like how we didn’t know whether the cat was alive or dead until we opened the box.This brings us to the strange and beautiful phenomenon of quantum entanglement.

这非常像我们不知道猫是死是活一样,直到打开盒子。这把我们带入奇怪而又美丽的量子纠缠现象。

Suppose that instead of one cat in a box, we have two cats in two different boxes. If we repeat the Schrödinger’s cat experiment with this pair of cats, the outcome of the experiment can be one of four possibilities. Either both cats will be alive, or both will be dead, or one will be alive and the other dead, or vice versa.

假设现在我们有两只猫,在两个不同的盒子里。如果我们对这一对猫重复“薛定谔的猫”的实验,这个实验的结果有四种可能——两只猫都活着或者都死了,亦或是,一只猫活着另一个死了,反之亦然。

outcome n [学术词] 结果(out + come)

The system of both cats is again in a superposition state, with each outcome having a 25% chance rather than 50%. But here’s the cool thing: quantum mechanics tells us it’s possible to erase (清除) the both cats alive and both cats dead outcomes from the superposition state.

这两只猫的系统又存在于叠加态,每种结果都有25%的可能性,而不是50%。但是,有趣的是量子力学告诉我们有可能去清除叠加态中的结果,即两只猫都活着或死去。

In other words, there can be a two cat system, such that the outcome will always be one cat alive and the other cat dead. The technical term for this is that the states of the cats are entangled.

换言之,可以是两只猫的系统,这个的结果是总有一只猫活着,另一只猫死去。这个科学术语就是猫的纠缠态。

But there’s something truly mind blowing about quantum entanglement. If you prepare the system of two cats in boxes in this entangled state, then move the boxes to opposite ends of the universe, the outcome of the experiment will still always be the same.

但是,量子纠缠存在着真正令人震惊的东西。如果在这种纠缠状态下,你在盒子里准备了两只猫的系统,然后把盒子移动到宇宙的两端,实验的结果仍然是一样的。

One cat will always come out alive, and the other cat will always end up dead, even though which particular cat lives or dies is completely undetermined before we measure the outcome. How is this possible? How is it that the states of cats on opposite sides of the universe can be entangled in this way?

一只猫总是活着,而另一只猫总是以死亡结束。尽管在得出结果前,我们完全无法确定哪只猫生,哪只猫死。这怎么可能?宇宙两端的猫的状态怎能这样纠缠在一起?

undetermined adj 无法确定的 

                      (un- + determine + -ed)

They’re too far away to communicate with each other in time, so how do the two bombs always conspire (策划) such that one blows up and the other doesn’t? You might be thinking, “This is just some theoretical mumbo jumbo (胡言乱语). This sort of thing can’t happen in the real world.” But it turns out that quantum entanglement has been confirmed in real world lab experiments.

他们相隔太远以至于不能及时沟通,那么,两个炸弹怎么能总是策划好一个爆炸而另一个安然无恙呢?你一定在想,这只是一些理论上的胡言乱语,这种事情不可能发生在真实的世界里。但是,事实证明量子纠缠已经在真实世界的实验室被证实了。

theoretical adj [学术词] 理论上的

confirm v [学术词] 证实

Two subatomic particles entangled in a superposition state, where if one spins one way then the other must spin the other way, will do just that, even when there’s no way for information to pass from one particle to the other indicating which way to spin to obey the rules of entanglement.

纠缠在一个叠加态中的两个亚原子粒子,如果一个粒子向一个方向旋转,那么另一个粒子必然向另一个方向旋转,即使从一个粒子传递的符合纠缠规则的、向哪个方向旋转的指令信息无法到达另一个粒子,它们也会这样旋转。

indicate v [学术词] 指示;指出

It’s not surprising then that entanglement is at the core of quantum information science, a growing field studying how to use the laws of the strange quantum world in our macroscopic world, like in quantum cryptography (密码学), so spies can send secure messages to each other, or quantum computing, for cracking secret codes (密码).

不足为奇的是,纠缠是量子信息科学的核心。这是一个正在发展的领域,研究在我们的宏观世界怎样应用奇怪的量子世界的定律。就像量子密码,间谍可以互相发送安全信息,或者用量子计算去破解密码。

core n [课标新增词] 核心

crack v [熟词生义] 破解;破译

Everyday physics may start to look a bit more like the strange quantum world. Quantum teleportation may even progress so far, that one day your cat will escape to a safer galaxy (星系), where there are no physicists and no boxes.

日常的物理可能开始看上去有点像奇怪的量子世界。量子远距离传送,甚至会发展更远。某天,你的猫可能会逃到另外一个更安全的星系,那里既没有物理学家,也没有盒子。

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

Powered By Z-BlogPHP 1.7.3

鲁ICP备14009403号